skip to main content


Search for: All records

Creators/Authors contains: "Singh, Chandralekha"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper reflects upon the challenges of teacher pro- fessional development, designed primarily for high school physics teachers, where both content and format were unfa- miliar. The content focus was quantum information science (QIS), and the original face-to-face (F2F) environment shifted to an online virtual with only a few months of plan- ning. As a result of C-19, many states are now implementing changes to K–12 education such as virtual options for cours- es or some type of hybrid learning environment.4 Therefore, identifying and addressing the challenges faced in providing virtual professional development may be of use to other ed- ucators who need to incorporate similar elements in virtual environments. 
    more » « less
    Free, publicly-accessible full text available January 1, 2025
  2. Abstract

    Quantum information science is a rapidly growing interdisciplinary field that is attracting the attention of academics and industry experts alike. It requires talent from a wide variety of traditional fields, including physics, engineering, chemistry, and computer science, to name a few. To prepare students for such opportunities, it is important to give them a strong foundation in the basics of quantum information science, in which quantum computing plays a central role. In this study, we discuss the development, validation, and evaluation of a tutorial on the Bloch sphere, a useful visual tool for developing intuition about single quantum bits (qubits), which are the basic building block of any quantum computer. Students’ understanding was evaluated after they received traditional lecture-based instruction on the requisite topics, and again after engaging with the tutorial. We observe, analyze, and discuss their improvement in performance on concepts covered in the tutorial.

     
    more » « less
  3. Abstract

    Research-validated multiple-choice questions comprise an easy-to-implement instructional tool for scaffolding student learning and providing formative assessment of students’ knowledge. We present findings from the implementation of a research-validated multiple-choice question sequence on the basics of two-state quantum systems, including inner products, outer products, translation between Dirac notation and matrix representation in a particular basis, and change of basis. This study was conducted in an advanced undergraduate quantum mechanics course, in both online and in-person learning environments, across three years. For each cohort, students had their learning assessed after traditional lecture-based instruction in relevant concepts before engaging with the multiple-choice question sequence. Their performance was evaluated again afterward with a similar assessment and compared to their earlier performance. We analyze, compare, and discuss the trends observed in the three implementations.

     
    more » « less
  4. Abstract Background

    Large introductory lecture courses are frequently post-secondary students’ first formal interaction with science, technology, engineering, and mathematics (STEM) disciplines. Grade outcomes in these courses are often disparate across student populations, which, in turn, has implications for student retention. This study positions such disparities as a manifestation of systemic inequities along the dimensions of sex, race/ethnicity, income, and first-generation status and investigates the extent to which they are similar across peer institutions.

    Results

    We examined grade outcomes in a selected set of early STEM courses across six large, public, research-intensive universities in the United States over ten years. In this sample of more than 200,000 STEM course enrollments, we find that course grade benefits increase significantly with the number of systemic advantages students possess at all six institutions. The observed trends in academic outcomes versus advantage are strikingly similar across universities despite the fact that we did not control for differences in grading practices, contexts, and instructor and student populations. The findings are concerning given that these courses are often students’ first post-secondary STEM experiences.

    Conclusions

    STEM course grades are typically lower than those in other disciplines; students taking them often pay grade penalties. The systemic advantages some student groups experience are correlated with significant reductions in these grade penalties at all six institutions. The consistency of these findings across institutions and courses supports the claim that inequities in STEM education are a systemic problem, driven by factors that go beyond specific courses or individual institutions. Our work provides a basis for the exploration of contexts where inequities are exacerbated or reduced and can be used to advocate for structural change within STEM education. To cultivate more equitable learning environments, we must reckon with how pervasive structural barriers in STEM courses negatively shape the experiences of marginalized students.

     
    more » « less
  5. After the passage of the U.S. National Quantum Initiative Act in December 2018, the National Science Foundation (NSF) and the Office of Science and Technology Policy (OSTP) recently assembled an interagency working group and conducted a workshop titled “Key Concepts for Future Quantum Information Science Learners” that focused on identifying core concepts for future curricular and educator activities to help precollege students engage with quantum information science (QIS). Helping precollege students learn these key concepts in QIS is an effective approach to introducing them to the second quantum revolution and inspiring them to become future contributors in the growing field of quantum information science and technology as leaders in areas related to quantum computing, communication, and sensing. This paper is a call to precollege educators to contemplate including QIS concepts into their existing courses at appropriate levels and get involved in the development of curricular materials suitable for their students. Also, research shows that compare-and-contrast activities can provide an effective approach to helping students learn. Therefore, we illustrate a pedagogical approach that contrasts the classical and quantum concepts so that educators can adapt them for their students in their lesson plans to help them learn the differences between key concepts in quantum and classical contexts. 
    more » « less
  6. Abstract

    Research-validated multiple-choice questions comprise an easy-to-implement instructional tool that serves to scaffold student learning and formatively assess students’ knowledge. We present findings from the implementation, in consecutive years, of a research-validated multiple-choice question sequence on measurement uncertainty as it applies to two-state quantum systems. This study was conducted in an advanced undergraduate quantum mechanics course, in online and in-person learning environments for consecutive years. Student learning was assessed after receiving traditional lecture-based instruction in relevant concepts, and their performance was compared with that of a similar assessment given after engaging with the multiple-choice question sequence. We analyze and discuss the similar and differing trends observed in the two modes of instruction.

     
    more » « less
  7. Abstract Background

    Motivational factors are one active area of research that aims to increase the inclusion of women in physics. One of these factors that has only recently gained traction in physics is intelligence mindset (i.e., the belief that intelligence is either innate and unchangeable or can be developed). We studied 781 students in calculus-based Physics 1 to investigate if their mindset views were separable into more nuanced dimensions, if they varied by gender/sex and over time, and if they predicted course grade. Confirmatory factor analysis was used to divide mindset survey questions along two dimensions: myself versus others and growth versus ability aspects of mindset. Paired and unpairedt-tests were used to compare mindset factors over time and between genders, respectively. Multiple regression analysis was used to find which mindset factors were the best predictors of course grade.

    Results

    This study shows that intelligence mindset can be divided into four factors: My Ability, My Growth, Others’ Ability, and Others’ Growth. Further, it reveals that gender differences are more pronounced in the “My” categories than the “Others’” categories. At the start of the course, there are no gender differences in any mindset component, except for My Ability. However, gender differences develop in each component from the start to the end of the course, and in the My Ability category, the gender differences increase over time. Finally, we find that My Ability is the only mindset factor that predicts course grade.

    Conclusion

    These results allow for a more nuanced view of intelligence mindset than has been suggested in previous interview and survey-based work. By looking at the differences in mindset factors over time, we see that learning environments affect women’s and men’s intelligence mindsets differently. The largest gender difference is in My Ability, the factor that best predicts course grade. This finding has implications for developing future mindset interventions and opens new opportunities to eliminate classroom inequities.

     
    more » « less
  8. Abstract

    Many prior studies have investigated female and male students’ self-efficacy (SE) in physics courses. However, test anxiety (TA) is rarely studied in the physics context, despite prior work suggesting it may play a detrimental role in the development of SE. In this study, we explore the relationships between SE, TA, and gender differences in introductory calculus-based physics performance. Although there has been research that uses TA and SE to predict student grades, no study to our knowledge has investigated this in the context of low- (e.g., homework and quizzes) and high-stakes (e.g., traditional exams) physics assessments. Using validated survey data and grade information, we compared the predictive power of SE and TA on student performance on a variety of assessment types. We found that there are gender differences in both SE and TA, as well as in high-stakes assessment outcomes. There were no gender differences in low-stakes assessment scores. Further, we found that models that control for SE and/or TA eliminate the predictive power of gender for high-stakes assessment outcomes. Finally, we found that SE partially mediates the effect of TA on high-stakes assessment outcomes. From these results, we make several suggestions for instructors that may alleviate the adverse effects of TA and make physics assessments more equitable and inclusive.

     
    more » « less
  9. Abstract

    Research-validated clicker questions as instructional tools for formative assessment are relatively easy to implement and can provide effective scaffolding when developed and implemented in a sequence. We present findings from the implementation of a research-validated clicker question sequence (CQS) on student understanding of the time-development of two-state quantum systems. This study was conducted in an advanced undergraduate quantum mechanics course for two consecutive years in virtual and in-person classes. The effectiveness of the CQS discussed here in both modes of instruction was determined by evaluating students’ performance after traditional lecture-based instruction and comparing it to their performance after engaging with the CQS.

     
    more » « less
  10. null (Ed.)